• Fertility Research - Can Stem Cells provide Embryo Models?
    An image of a cell embryo model (left) and a natural human embryo (right) Credit: University of Exeter

News & Views

Fertility Research - Can Stem Cells provide Embryo Models?

“Our new technique provides for the first time a reliable system to study early development in humans without using embryos. This shouldn’t be seen as a move towards producing babies in a laboratory, but rather as an important research tool that could benefit IVF and infertility studies” Ge Guo.

The ability of stem cells to turn into different types of cell has led scientists at the University of Exeter’s Living Systems Institute, along with colleagues from the University of Cambridge, to develop a method of organising lab-grown stem cells into an accurate model of the first stage of human embryo development.

These models could benefit research into infertility, by furthering understanding of how embryos develop and the conditions needed to avoid miscarriage and other complications, as well as the possibility of improving the development of embryos in assisted conception procedures such as IVF.

Models resemble a blastocyst

Funded by the Medial Research Council, the study discovered that a human stem cell was able to generate the founding elements of a blastocyst – the very early formation of an embryo after a fertilised egg divides. Professor Austin Smith, Director of the University of Exeter’s Living Systems Institute, said: “Finding that stem cells can create all the elements of an early embryo is a revelation. The stem cells come from a fully-formed blastocyst, yet they are able to recreate exactly the same whole embryo structure. This is quite remarkable and unlocks exciting possibilities for learning about the human embryo.”

After arranging the stem cells into clusters, two molecules known to influence how cells behave in early development were briefly introduced. After 3 days, the scientists found that 80 per cent of the clusters had organised themselves after into structures resembling the blastocyst stage of an embryo – a ball of around 200 cells that forms from the fertilised egg after 6 days. The team went on to show that the artificial embryos have the same active genes as the natural embryo.

Research tool for IVF

Dr Ge Guo of the University’s institute said: “Our new technique provides for the first time a reliable system to study early development in humans without using embryos. This shouldn’t be seen as a move towards producing babies in a laboratory, but rather as an important research tool that could benefit IVF and infertility studies”

The next stage for the researchers is to understand how to develop the artificial embryos a few days further to study the critical period when an embryo would implant into the womb, which is when many embryos fail to develop properly.

‘Naive stem cell blastocyst model captures human embryo lineage segregation’, is published in Cell Stem Cell.

More information online


Digital Edition

Lab Asia 31.6 Dec 2024

December 2024

Chromatography Articles - Sustainable chromatography: Embracing software for greener methods Mass Spectrometry & Spectroscopy Articles - Solving industry challenges for phosphorus containi...

View all digital editions

Events

Turkchem

Nov 27 2024 Istanbul, Turkey

Smart Factory Expo 2025

Jan 22 2025 Tokyo, Japan

Instrumentation Live

Jan 22 2025 Birmingham, UK

SLAS 2025

Jan 25 2025 San Diego, CA, USA

Arab Health

Jan 27 2025 Dubai, UAE

View all events