• WITec Paper Awards 2022 presented to Winners around the Globe
    Gold Award: Hyun-Chae Loh from MIT in Cambridge, Massachusetts (right) receives the WITec Paper Award Gold certificate from Michael C. Lipton, Oxford Instruments Regional Sales Manager (left).
  • Silver Award: Official handing over of the Paper Award Silver certificate. From left to right: WITec Sales Manager Stefan Gomes da Costa and Nathalie Jung, Maike Windbergs and Francesco Pampaloni from the Goethe-University in Frankfurt am Main, Germany
  • Bronze Award: The WITec Paper Award Bronze winner Xin Huang (middle) with his co-workers Le Zhang (left) and Jiayuan He (right) from the SINOPEC Petroleum Exploration and Production Research Institute in Beijing, China.

News & views

WITec Paper Awards 2022 presented to Winners around the Globe

The WITec Paper Awards 2022 have been given to scientists from the US, Germany and China, recognising their work in cement chemistry, pharmacy and methane hydrate chemistry. Every year, the WITec Paper Award highlights three scientific publications that contain data acquired with a WITec microscope. More than 100 papers were submitted to this year’s contest and as well as congratulating the winners the company expressed their thanks for all those that participated.

The winners were as follows:

GOLD: Hyun-Chae Loh, Hee-Jeong Kim, Franz-Josef Ulm, Admir Masic (2021) Time-space-resolved chemical deconvolution of cementitious colloidal systems using Raman spectroscopy. Langmuir 37: 7019-7031. DOI: 10.1021/acs.langmuir.1c00609

SILVER: Nathalie Jung, Till Moreth, Ernst H. K. Stelzer, Francesco Pampaloni, Maike Windbergs (2021) Non-invasive analysis of pancreas organoids in synthetic hydrogels defines material-cell interactions and luminal composition. Biomaterials Science 9: 5415-5426. DOI: 10.1039/D1BM00597A

BRONZE: Xin Huang, Le Zhang, Wenjiu Cai, Jiayuan He, Hailong Lu (2022) Study on the characteristic spectral bands of water molecule and hydrogen bond of methane hydrate. Chemical Engineering Science 248: 117117 (available online 2021). DOI: 10.1016/j.ces.2021.117117

Previous Paper Award winners are listed on the award website.


The Paper Award GOLD: Hydration kinetics of cement

Concrete is used extensively in construction due to its durability and strength. It forms in a chemical reaction of cement with water and fresh concrete can still be moulded during the setting process. In order to optimise the material properties, including the setting time, a thorough understanding of the hydration reaction of cement is required. Hyun-Chae Loh wins the Gold Paper Award 2022 for investigating the early hydration kinetics of ordinary Portland cement together with his colleagues Hee-Jeong Kim, Franz-Josef Ulm and Admir Masic from the Department of Civil and Environmental Engineering at the Massachusetts Institute of Technology in Cambridge, USA. The group used in situ underwater Raman microscopy for monitoring the transformation of the silicate phases into hydration products during cement setting. Using two-point correlation functions of the Raman images, the reaction kinetics could be quantified. This spatio-temporal analysis yielded mechanistic insights into the cement setting, supporting the theory of a percolation process. “Our approach is also applicable to other aspects of cement chemistry,” said Admir Masic. “For example, the roles of sulphate, aluminate and carbonate phases in cement setting will be the subject of future publications.”

The Paper Award SILVER: Organoid formation

From basic research to personalised medicine, well-defined model systems are critically important for understanding human diseases and developing therapies. In this context, so-called organoids have great potential, as these 3D microstructures have organ-like properties. These 3D cell cultures are typically grown in hydrogels, artificial matrices that provide the scaffolding for organoid formation. Nathalie Jung and Till Seeberger (né Moreth) win the Silver Paper Award 2022 for presenting Raman imaging as a non-invasive method for characterising organoid formation in different environments. They performed the study together with their colleagues Ernst H. K. Stelzer, Francesco Pampaloni and Maike Windbergs at the Institute of Pharmaceutical Technology and the Buchmann Institute for Molecular Life Sciences at the Goethe-University in Frankfurt am Main, Germany. Pancreatic organoids were grown in different hydrogels and their growth rates, composition and matrix interactions were characterised. “The advantage of Raman microscopy is that even native cell cultures can be investigated without time-consuming and destructive sample preparation,” explains Nathalie Jung. This approach enabled the authors to compare organoid formation in different hydrogels and select the most promising formulations. The technique can also be used for investigating the chemical composition of the organoid lumen, monitoring compound secretion and the effect of drugs on the living cells.

The Paper Award BRONZE: Methane hydrate formation

Methane hydrate is an ice-like solid consisting of methane molecules trapped in the water crystal structure. Naturally occurring methane hydrate reservoirs are potential energy sources, but may contribute to global warming if released into the atmosphere. Xin Huang receives the Bronze Paper Award 2022 for his detailed characterisation and interpretation of the Raman spectral changes during methane hydrate formation, performed with his co-workers Le Zhang, Wenjiu Cai, Jiayuan He and Hailong Lu. The study was a collaboration between two institutions in Beijing, China: the SINOPEC Petroleum Exploration and Production Research Institute and the Beijing International Center for Gas Hydrate at Beijing University. The scientists recorded Raman spectra from within a reactor in which methane hydrate formed under controlled conditions. Focusing on spectral features of the water molecules, they identified and interpreted several spectral indicators of hydrate formation. Of note, the phase transition was marked by an abrupt change in the spectral region representing hydrogen bond vibrations. Changes in the stretching vibrations of hydrogen-oxygen bonds were also analysed quantitatively. The authors are convinced that their approach “can be widely used in laboratory research and field hydrate exploration.”

Participate in 2023

WITec invites researchers from all fields of application in industry and academia to participate in the Paper Award 2023 competition. Articles are eligible if they were published in 2022 (in print or online) in a peer-reviewed journal and contain results obtained with a WITec instrument. Submit your work as a PDF online before 31 January 2023. The WITec jury looks forward to receiving many outstanding publications.

More information online


Digital Edition

Lab Asia 31.6 Dec 2024

December 2024

Chromatography Articles - Sustainable chromatography: Embracing software for greener methods Mass Spectrometry & Spectroscopy Articles - Solving industry challenges for phosphorus containi...

View all digital editions

Events

Smart Factory Expo 2025

Jan 22 2025 Tokyo, Japan

Instrumentation Live

Jan 22 2025 Birmingham, UK

SLAS 2025

Jan 25 2025 San Diego, CA, USA

Arab Health

Jan 27 2025 Dubai, UAE

Nano Tech 2025

Jan 29 2025 Tokyo, Japan

View all events