News & Views
DNA Structures Provide Alternative Delivery System
Feb 22 2016
Researchers from UCL and Nanion Technologies have used DNA to construct pores with a defined shape and charge which can be used to improve drug delivery. The study* shows these building blocks, which control which molecules can pass through the pore and when, can be precisely anchored into the walls – or membranes – of vesicles which are carrying therapeutics targeted to different tissues using biological markers. Previously, releasing drugs from inside vesicles was triggered with temperature-induced leaky vesicle walls or with inserted peptide channels, which are less rigid and predictable than DNA. The research was funded by BBSRC, Leverhulme Trust and UCL Chemistry.
Lead author, Dr Stefan Howorka (UCL Chemistry), said: “Natural biological pores made of proteins are essential for transporting cargo into and out of biological cells but they are hard to design from scratch. DNA offers a whole new strategy for constructing highly specific synthetic pores that we can open and close on demand. We’ve engineered our pores to act like doors – the door unlocks only when provided with the right key. By building these pores into drug carriers, we think it will allow for much more precise targeting of therapeutics.”
“Our pores take the shape of an open barrel made of six DNA staves. We designed a molecular gate to close off one entrance but then re-open the channel when a specific molecule binds. Anchors with high membrane affinity were attached to tether the water-soluble pores into the oily membrane,” said first author, Dr Jonathan Burns (UCL Chemistry).
Co-author Astrid Seifert who works with Dr Niels Fertig at Nanion Technologies, said: “We were able to precisely analyse the performance of each of the pores we created. We first inserted pores in membranes and then tested the biophysical response of each channel using advanced microchips. We’ve not only developed a new way to design highly specific pores but also an automated method to test their properties in situ, which will be important for testing pores being used for targeted drug delivery in the future.”
The researchers plan on testing the synthetic pores in a variety of scenarios including the release of anti-cancer drugs to cells and the development of pores that release pharmaceutically active biomolecules.
*Published in Nature Nanotechnology
Digital Edition
LMUK 49.7 Nov 2024
November 2024
News - Research & Events News - News & Views Articles - They’re burning the labs... Spotlight Features - Incubators, Freezers & Cooling Equipment - Pumps, Valves & Liquid Hand...
View all digital editions
Events
Nov 18 2024 Shanghai, China
Nov 20 2024 Karachi, Pakistan
Nov 27 2024 Istanbul, Turkey
Jan 22 2025 Tokyo, Japan
Jan 22 2025 Birmingham, UK