• How Long Can an Astronaut Safely Stay in Space?

    News

    How Long Can an Astronaut Safely Stay in Space?

    Life in space has always fascinated earthlings, with blockbuster films such as The Martian only serving to fan the flames of curiosity. While Matt Damon did quite the job of making a life for himself on Mars, it did leave viewers wondering how long humans can actually survive in space.

    Put simply, the answer is unclear. Technology is constantly evolving, and the number of days an astronaut can maintain a healthy ‘lifestyle’ in space is continually increasing.

    Russia breaks records

    To date, the longest continuous amount of time a human has spent in space is 437 days. This feat was lived out by Russian astronaut Valeri Polyakov. When it comes to total number of days spent in space, fellow Russian Sergei Krikalev takes the cake, with over 803 days in space, spread out over six flights.

    The physical effects of space

    So what makes it so difficult to survive in space? For starters, the human body has evolved to function under gravitational conditions. This means that space is a harsh condition for humans. As muscles constantly work against gravity on planet Earth, they start to deteriorate in space. This includes the heart, which shrinks.

    As bones are no longer needed to support the body’s weight they neglect the need to maintain themselves. While bone tissue is still absorbed it’s not rebuilt, which can cause fractures and kidney stones. Research has also shown that extended periods in space can dysregulate the immune system, and leave astronauts vulnerable to pathogens, hypersensitivity and unwanted autoimmune responses.

    The risk of radiation

    Radiation is another serious threat, with astronauts continuously exposed to multiple forms of energy, including solar radiation, galactic cosmic radiation, geomagnetically bound radiation and solar cosmic particles. Overexposure can trigger serious cell mutation, leading to cancer, epigenetic effects and even death. Radiation can also impair bodily functions, causing bone marrow to deteriorate, the immune system to weaken and cataracts to develop in the eyes. Even with next generation shielding materials to protect them, astronauts are still at risk of secondary radiation from gamma rays and energetic neutrons.

    While radiation can be a serious health problem, light also plays a major role in modern science. ‘Light Source Characterisation in Life Sciences’ explores photonics in further detail, and its role in a myriad of life science arenas, including biological research, biomedical instrumentation and agriculture. From effective UV disinfection and optimal aquarium illumination to accurate blood oximetry, success depends largely on the ability to understand the performance of certain light sources.

    Image via Flickr Creative Commons. Photo credits: NASA HQ Photo
     


    Digital Edition

    ILM 50.2 March 2025

    March 2025

    Chromatography Articles - Effects of small deviations in flow rate on GPC/SEC results Mass Spectrometry & Spectroscopy Articles - Waiting for the present to catch up to the future: A bette...

    View all digital editions

    Events

    CISILE 2025

    Mar 31 2025 Beijing, China

    Interphex

    Apr 01 2025 New York, USA

    Analytica Vietnam

    Apr 02 2025 Saigon, Vietnam

    Medtec Japan 2025

    Apr 09 2025 Tokyo, Japan

    View all events

    Redirecting you now.
    Labmate Awards Nominations - Open
    The Labmate Awards for Excellence 2025 seek to recognise innovation, quality and achievement wherever it occurs within the laboratory sector. Launching this year the Labmate Awards for Excellence 2025 will have eleven voting categories chosen to reflect the broad range of noteworthy contributions that have been made across our industry in the past 12 months. Nominate your company Now.