• Powerful Platform for Photochemistry in Flow
    An Asynt fReactor Photo Flow with 5 modules set-up on a hotplate stirrer.
  • Professor Nikil Kapur of the University of Leeds examining fReactor Photo Flow modules.

Laboratory Products

Powerful Platform for Photochemistry in Flow

Sep 03 2021

What are the benefits and drawbacks of photocatalysis?

Photocatalysis is an important synthetic tool for providing access to reaction pathways which would normally prove problematic or require multi-step synthetic routes using classical thermal or chemical activation methods. However, until now, synthetic organic chemists have shied away from photochemistry because of safety concerns around ionising UV light, and overly complex equipment.

Easy-to-use platform with high operational safety 

To address this problem, Asynt, in conjunction with the University of Leeds, has developed the fReactor Photo Flow, an easy-to-use, yet powerful platform for scientists looking to explore photochemistry in Flow Chemistry applications.

Specifically designed for ease of use and high operational safety, the fReactor Photo Flow delivers all the key advantages of flow photochemical reactors, over conventional batch systems, including consistent light flux, controlled exposure times and precise temperature control.

This new addition to the Asynt fReactor Flow Chemistry platform has been launched with two high power LED wavelengths options (450nm/Blue and 365nm/UV) to suit most photochemical activation requirements. Alternative excitation wavelength options are available upon request.

Asynt's popular fReactor platform offers chemists an affordable entry point into the world of Flow Chemistry. Integrating the efficiency of pipe-flow processing with the advanced mixing of 5 Continuous Stirred Tank Reactors (CSTR), fReactor delivers a versatile ‘plug-and-flow’ setup which is well-suited to multiphasic reactions allowing chemists to explore continuous-flow processing with ease.

Installation of each fReactor Photo Flow module is exceptionally straight forward. By placing the module over the required fReactor cell, the Photo Flow simply clips quickly into position ready for you to start your experiment. Designed for flexibility, you can choose how many Photo Flow modules to use on a fReactor base platform, from one to five. All five fReactor Photo Flow modules can be powered from a single power supply using an optional splitter lead.

To view PowerPoint slides from the recent ‘Unlocking Photochemistry in Flow’ on-demand webinar please visit

More information online
 


Digital Edition

ILM 49.5 July

July 2024

Chromatography Articles - Understanding PFAS: Analysis and Implications Mass Spectrometry & Spectroscopy Articles - MS detection of Alzheimer’s blood-based biomarkers LIMS - Essent...

View all digital editions

Events

ACS National Meeting - Fall 2024

Aug 18 2024 Denver, CO, USA

EMC2024

Aug 25 2024 Copenhagen, Denmark

Lab Cambodia 2024

Aug 28 2024 Phnom Penh, Cambodia

JASIS 2024

Sep 04 2024 Chiba, Tokyo, Japan

BMSS-BSPR Super Meeting 2024

Sep 04 2024 University of Warwick, Coventry, UK

View all events