Research News
Can new patterns in Sun’s layers explain longstanding Solar Mystery?
Oct 18 2023
“We have used the most powerful solar optical telescope in the world to reveal the most complex magnetic-field orientations ever seen at the smallest scales. This brings us closer to understanding one of the biggest conundrums in solar research” Michail Mathioudakis
Through investigations of the Sun’s surface astronomers at the Astrophysics Research Centre (ARC) at Queen’s University Belfast (QUB), have revealed a new, complex, snake-like pattern of energy that exists in addition to the ‘loops’ observed previously.
Using the US National Science Foundation's (NSF) Daniel K Inouye Solar Telescope (DKIST) in Hawaii - the most powerful, solar telescope in the world –researchers at QUB, in partnership with an international group of experts captured the most detailed representations to date of the magnetic field of the so-called ‘quiet’ surface of the Sun.
They believe the discovery of the new energy pattern has implications for how we model energy transfer between the layers of the Sun, as it might help explain one of the biggest conundrums in astrophysics – why the outermost layer of the Sun (‘corona’) is hundreds of times hotter than the surface (‘photosphere’), even though the opposite would be expected.
Led by QUB, the research partnership included experts from the NSF's National Solar Observatory, USA; the High Altitude Observatory, USA; California State University, Northridge, USA; the Max Planck Institute for Solar System Research, Germany; the University of Sheffield, UK; and Eotvos Lorand University, Hungary.
DKIST, inaugurated in 2022, is the most powerful, solar, optical telescope on Earth, enabling record-breaking observations of our Sun, with a resolving power being the equivalent to seeing a 50p coin in Manchester from London. It incorporates cameras made by Northern Ireland-based company Andor Technologies.
“The Sun is the most important astronomical object for humankind with solar activity driving space weather and having profound effects on humanity,” commented Professor Michail Mathioudakis, Co-Investigator on the research and Director of ARC at Queen’s.
“The more complex the small-scale variations in magnetic-field direction, the more plausible it is that energy is being released through a process we call magnetic reconnection – when two magnetic fields pointing in opposite directions interact and release energy that contributes to atmospheric heating.
“We have used the most powerful solar optical telescope in the world to reveal the most complex magnetic-field orientations ever seen at the smallest scales. This brings us closer to understanding one of the biggest conundrums in solar research.
“These exciting observations from the world’s largest solar optical telescope highlight the leadership position that both Queen’s and the UK hold in the field of solar physics. It is also a testimony to the quality and dedication of our early-career researchers who study some of the most challenging problems of modern astrophysics and are taking significant steps towards their solution.”
Shifting focus of research
In the past, much research into the heat variations between corona and photosphere has focussed on ‘sunspots’ – very large, highly magnetic and active regions, often comparable to Earth in size – that can act as conduits for energy between the Sun’s outer layers.
Turning their attentions to investigating magnetic fields on a much smaller scale, Queen’s found that away from away from sunspots, the so-called ‘quiet sun’ is covered in convective cells known as ‘granules’, typically about the size of France, that harbour much weaker, but more dynamic magnetic fields that may hold the secrets to balancing the energy budget of the chromosphere.
While most observational reports of the past decade have found that magnetic fields are organised in terms of small loops in the quiet photosphere, the Queen’s researchers, who locate nearly 50 of these structures in a single observation, found the first evidence of a more complicated pattern consistent with a snake-like variation in the magnetic orientation.
Lead Author and Research Fellow at Queen’s, Dr Ryan Campbell said: “To measure these weak magnetic fields, we need very sensitive instruments. We can’t directly measure the magnetic fields, so instead we measure the imprint they leave on the light emitted in their presence. The magnetic fields polarise the light, generating signals that are less than half a percent of the size of our intensity measurements. We also require very high-resolution observations, which is where DKIST comes in. The result is therefore also a remarkable feat of engineering.”
He continued: “The key question to answer now is how common serpentine magnetic-field configurations are in the quiet Sun, and how far they can permeate into higher layers, so we can assess their contribution to chromospheric heating. To do this, we need more observations.”
The research published in Astrophysical Journal Letters was supported by funding from the Science and Technology Facilities Council, part of UKRI, Horizon 2020 and the National Science Foundation, USA. DKIST is located on land of spiritual and cultural significance to Native Hawaiian people. The use of this important site to further scientific knowledge is done so with appreciation and respect.
More information online
Digital Edition
Lab Asia 31.6 Dec 2024
December 2024
Chromatography Articles - Sustainable chromatography: Embracing software for greener methods Mass Spectrometry & Spectroscopy Articles - Solving industry challenges for phosphorus containi...
View all digital editions
Events
Nov 27 2024 Istanbul, Turkey
Jan 22 2025 Tokyo, Japan
Jan 22 2025 Birmingham, UK
Jan 25 2025 San Diego, CA, USA
Jan 27 2025 Dubai, UAE