News & Views
International Project to Develop Human Skin Substitutes
Mar 19 2018
Foundation Ireland’s Medical Devices Research Centre CÚRAM is partnering with five other European institutions to develop advanced therapies and technologies in skin regeneration for the treatment of burns and chronic wounds. The aim of the €4 million NanoGrowSkin project is to develop a bioengineered human skin substitute, improving the manufacturing process, shortening the production time and enhancing its treatment effectiveness.
Director of CÚRAM, Professor Abhay Pandit, who will lead the research project from NUI Galway, said: “The skin is the main protective barrier the body has against any external attack. Any skin disease or injury needs to be treated immediately. The most common conditions are wounds, pressure ulcers and burns and current treatments based on the use of skin grafts, or even on implanting skin originating from a donor, are associated with several problems. In this project we will be investigating the development of a bioengineered human skin substitute that would be a suitable option for treating patients.
“We aim to overcome the two major drawbacks of severe skin wounds, the urgent need of an effective skin implant in life-threatening situations and to avoid/counteract usual bacterial infections.” added Professor Pandit.
The international research team will take advantage of their combined expertise on tissue engineering to manufacture an autologous (from the patient’s own body) skin substitute, comprised of materials whose safety and efficacy have already been proven in humans.
The first milestone of the NanoGrowSkin project will be the optimisation of human artificial skin models by using pharmaceutical quality products and the implementation of novel methods, such as nanomedicine technologies which could allow the development of biomaterials with improved and suitable biomechanical and antimicrobial properties.
The second aim of NanoGrowSkin will be to adapt the production of these new tools towards an optimal regulatory framework, including Good Manufacturing Practice regulation and European Medicines Agency guidelines. Finally, the project will include the development of a market access approach in order to estimate the benefits of this treatment for the entire society. The envisaged model will include the calculation of cost per patient as well as potential cost-savings and/or cost-effective measures for the affordable introduction of the tissue-engineered treatment.
The project team is being led by Professor Miguel Alaminos, Health Research Institute in Granada and the University of Granada, Spain, with partners from the Italian Biochemical Institute, the University of Bordeaux and the University of Technology of Compiègne in France, CÚRAM at NUI Galway and the company OSI Health XXI in Spain.
Digital Edition
LMUK 49.7 Nov 2024
November 2024
News - Research & Events News - News & Views Articles - They’re burning the labs... Spotlight Features - Incubators, Freezers & Cooling Equipment - Pumps, Valves & Liquid Hand...
View all digital editions
Events
Nov 18 2024 Shanghai, China
Nov 20 2024 Karachi, Pakistan
Nov 27 2024 Istanbul, Turkey
Jan 22 2025 Tokyo, Japan
Jan 22 2025 Birmingham, UK