• Ohio State University researchers use Nanoparticle Tracking Analysis in NIH-funded project for cancer therapy
    Malvern NanoSight System

News & Views

Ohio State University researchers use Nanoparticle Tracking Analysis in NIH-funded project for cancer therapy

Ohio State University researchers use Nanoparticle Tracking Analysis in NIH-funded project for cancer therapyResearchers in the Department of Chemical and Biomolecular Engineering at The Ohio State University (Columbus, Ohio, USA) are using Malvern Instruments’ NanoSight Nanoparticle Tracking Analysis (NTA) to study extracellular vesicle yields from different cell culture lines. 

Dr Michael Paulaitis, Ohio Eminent Scholar and Professor Emeritus, and Prof. Jeffrey Chalmers have been leading the team characterizing the microvesicles. The work is part of a larger NIH-funded project headed by Prof. Thomas D. Schmittgen and Prof. Mitch Phelps in the Division of Pharmaceutics and Pharmaceutical Chemistry at the university. The project aims are to engineer cells to manufacture extracellular vesicles that target the liver, in order to deliver a specific microRNA species capable of retarding the growth of tumor cells. 

Extracellular vesicles are released by almost all cell types. By transferring their molecular cargo, they have the potential to alter the function of recipient cells. The overall project includes the development of cell lines capable of producing large numbers of extracellular vesicles that have specific gene inclusions and a surface tag for targeting. NTA is being used to quantify extracellular vesicle particle numbers and yields in terms of their microRNA content and the presence of the surface markers. The ultimate aim of the project is to further the development of specific therapeutic options for hepatocellular carcinoma (HCC), the third most prevalent cancer in the world. 

“The Malvern NanoSight NTA system allows us to directly and reliably quantify extracellular vesicle yields from the cell lines under investigation, which is critical to this project” said Dr Paulaitis. “We are also using the system to study the fusion of extracellular vesicles with synthetic nanoparticles, for the purpose of engineering the properties of the nanoparticles. We use a combination of the light scattering and fluorescence tracking functions of the NanoSight system to determine the proportion of fluorescently labeled nanoparticles that have bound to the extracellular vesicles. Having determined that we can quantify binding, the next step will be to scale up and apply NTA as a QC and process evaluation technique.” 

The Malvern NanoSight range of instruments uses Nanoparticle Tracking Analysis to characterize nanoparticles from 10 nm - 2000 nm in solution. Each particle is individually but simultaneously analyzed by direct observation and measurement of diffusion events. This particle-by-particle methodology produces high-resolution results for particle size distributions and concentrations, while visual validation provides users with additional confidence in their data. Both particle size and concentration are measured, while the fluorescence tracking mode can provide differentiation of labelled or naturally fluorescing particles. 

The research at The Ohio State University is supported by NIH Common Fund Grant 1UH2TR000914-01, “Targeted delivery of microRNA loaded microvesicles for cancer therapy,” and by the NSF Nanoscience and Engineering Center for Affordable NanoEngineering of Polymeric Biomedical Devices. 

Further details of the project can be found HERE>>

To learn more about Malvern’s NanoSight NTA systems Click HERE>>

Malvern, Malvern Instruments and NanoSight are registered trademarks of Malvern Instruments Ltd


Digital Edition

LMUK 49.7 Nov 2024

November 2024

News - Research & Events News   - News & Views Articles - They’re burning the labs... Spotlight Features - Incubators, Freezers & Cooling Equipment - Pumps, Valves & Liquid Hand...

View all digital editions

Events

analytica China

Nov 18 2024 Shanghai, China

Pharma Asia

Nov 20 2024 Karachi, Pakistan

Turkchem

Nov 27 2024 Istanbul, Turkey

Smart Factory Expo 2025

Jan 22 2025 Tokyo, Japan

Instrumentation Live

Jan 22 2025 Birmingham, UK

View all events