News & Views
Could Copper Provide Breakthrough in Spread of Flu Infections
Feb 14 2006
The Southampton researchers placed 2 million plaque-forming units of Influenza A (H1N1) on coupons of C11000 copper (common, pure copper sheet metal) and on S30400 (common stainless steel) at room temperature and then came back periodically to determine the survival rates of the samples. On the stainless steel surface, the pathogen declined to 1 million after six hours and to 500,000 after 24 hours. Meanwhile, the copper surface achieved a reduction to 500,000 after only one hour and inactivated all but 500 - a 99.99% reduction - after just six hours.
In the research, Professor Keevil notes that the H1N1 strain tested is nearly identical to the H5N1 (avian) strain and that the effectiveness of copper's antimicrobial properties should be nearly identical as well. He explains that, while vaccines stimulate host antibodies to target specific exposed cell surface structures (epitopes), copper's antimicrobial action probably attacks the overall structure of the virus and therefore has a broad-spectrum effect. These results are "consistent with the demonstrated antimicrobial effects of copper cited in published studies on E. coli O157:H7, Methicillin-Resistant Staphylococcus aureus (the superbug, MRSA) and Listeria," said Professor Keevil, adding that similar antimicrobial efficacy may be achieved by the infusion of copper ions into fabrics, filters or other materials. However, such applications may have diminished effectiveness over time, because the amount of copper in such materials is much less than in solid copper alloys.
Suggesting it would be worthwhile to consider using uncoated copper or high-copper alloys, such as many brasses and bronzes, for common-touch surfaces to help minimise cross-contamination, Professor Keevil said: "Door knobs and handles, push plates, countertops, sinks and other frequently-touched hardware in healthcare and other public facilities are prime candidates for use of copper alloys to help control the spread of infection." The Southampton research was sponsored by the Copper Development Association (CDA) in the USA and the International Copper Association.
Digital Edition
International Labmate 49.6 - Sept 2024
September 2024
Chromatography Articles - HPLC gradient validation using non-invasive flowmeters Mass Spectrometry & Spectroscopy Articles - From R&D to QC, making NMR accessible for everyone: Putting NMR...
View all digital editions
Events
Nov 11 2024 Dusseldorf, Germany
Nov 12 2024 Cologne, Germany
Nov 12 2024 Tel Aviv, Israel
Nov 18 2024 Shanghai, China
Nov 20 2024 Karachi, Pakistan