• Nano-Scale Elemental Analysis of Semiconductors in SEM
  • Nano-Scale Elemental Analysis of Semiconductors in SEM

Chromatography

Nano-Scale Elemental Analysis of Semiconductors in SEM

The increasingly smaller scale of semiconductor structures necessitates elemental analysis in the nanometer range. For research and production control it is required to know where layers, dopants and other features of interest are located as these have a vital influence on the function and performance of the products. X-ray analysis using an energy dispersive spectrometer (EDS) on a scanning electron microscopes (SEM) is well suited for the purpose. The use of this analytical method is best explained using a practical example analyzed with the Bruker QUANTAX EDS system..

Bulk sample Elemental analysis in the SEM with highest spatial resolution is usually performed at very low acceleration voltage below 5 kV, in some cases even below 3 kV. This is done to reduce penetration depth and scattering of electrons in the sample and so attain smaller regions from which X-rays are emitted. Depending on the density of the sample spatial resolution of 100 nm and below can be attained.

The analytical task in this case was to locate the element tungsten (W) within the structure depicted in a DDR-RAM located in the first figure of this article. If working with low acceleration energies consequently only low energy peaks of elements can be used. Many peak overlaps in this region make analysis difficult, especially in the application we have chosen (which is quite common to semiconductor analysis), as the sample spectrum the second figure illustrates.
As can be seen, there is an almost 100% overlap between the tungsten M peak and the silicon (Si) K peak. This problem can be solved by a well-designed peak deconvolution procedure, which can accurately assign counts in a peak to either the one or the other element (works also with more than two elements). Mapping the whole sample and using peak deconvolution clearly separates W and Si, in the third figure shows.

It can therefore be concluded that tungsten is concentrated in the bright structure at the top of Fig. 1, while Si – as the substrate material – is present in most parts of the sample. This and similar information obtained can be an important aid in further improving semiconductor structures and to determine failures.


Digital Edition

Lab Asia 32.2 April

April 2025

Chromatography Articles - Effects of small deviations in flow rate on GPC/SEC results Mass Spectrometry & Spectroscopy Articles - Waiting for the present to catch up to the future: A bette...

View all digital editions

Events

Medtec Japan 2025

Apr 09 2025 Tokyo, Japan

FORUMESURE

Apr 22 2025 Hammamet, Tunisia

Korea Lab 2025

Apr 22 2025 Kintex, South Korea

Analytica Anacon India & IndiaLabExpo

Apr 23 2025 Mumbai, India

Analitika Expo 2024

Apr 23 2025 Moscow, Russia

View all events

Great Job...
The latest issue will be with you shortly
Sign up to Labmate for FREE.
Register and get the eBulletin, a Monthly email packed with the latest Laboratory products, news and services. Join us and get the latest Laboratory information first.