focus on Chromatography

Automation of a Complex, Multi-Step Sample Preparation Using the Standalone Agilent 7696A WorkBench

James D. McCurry, PhD, Senior Scientist, Agilent Technologies

In analytical chemistry, sample preparation can be as simple as adding a solvent or as complex as performing chemical reactions to improve the instrumental measurements that follow. While sample preparation is a critical component to any chemical measurement, chemists rarely look forward to performing this job, especially if it is complex, boring and involves handling unpleasant chemicals. As a result, manual sample preparation can be the source of many errors and poor precision. To help reduce errors and improve precision, many manual sample preparations are done using with large amounts of chemicals and expensive volumetric glassware to make handling, dispensing, and measuring easier.

A good example of a difficult manual preparation is ASTM method D6584. This method measures the free and total glycerin content in B100 biodiesel to assure good product quality [1]. Since the various glycerins found in biodiesel are not volatile, they cannot be measured using gas chromatography (GC). Method D6584 describes a sample preparation protocol to derivatise these compounds with a trimethylsilation reagent so they can be analysed with GC. The steps for this sample preparation are complex, time consuming, and use pyridine; a toxic solvent with a distinctly unpleasant odour. This assures the unpopularity of this procedure.

The Agilent 7696A Sample Prep WorkBench is a standalone instrument specifically designed to perform automated sample preparation [1,2]. It uses two 7693A injection towers to volumetrically transfer liquids between 2-mL vials. The vials containing various chemical resources, standards and samples are housed in three 50-positions trays. The sample tray compartment houses a robotic arm to move vials, a vortex mixing station and a sample heating station.

Designing the 7896A WorkBench Procedure

The ASTM D6584 preparation procedure can be completely described in six individual steps as shown in *Table 1*. When done manually, this prep consumes large amounts of standards, reagents, solvents and disposable glassware. Since the Agilent WorkBench uses smaller 2-mL vials, this procedure can be scaled down by a factor of 10. The WorkBench also uses two pipetting syringes to transfer liquids, thus eliminating the expense of disposable glassware. *Table 1* also shows how each step was scaled to accommodate the 2-mL vials used by the WorkBench.

Table 1. ASTM method D6584 uses a six step derivatisation of glycerins in biodiesel to prepare the samples for analysis by high temperature GC. Since the Agilent 7696A Sample Prep WorkBench uses 2-mL vials, the manual sample must be scaled down 10:1.

Steps	Manual Sample Prep in 15-mL Vials	10:1 Scaling ->	WorkBench Sample Prep using 2-mL Vials
1	Add 100 mg B100 to a 15 mL vial with Teflon screw cap		Add 10 mg B100 to a 2 mL vial with Teflon screw cap
2	Add 100 uL ISTD1 solution (butanetriol) to the vial		Add 10 uL ISTD1 solution (butanetriol) to the vial
3	Add 100 uL ISTD2 solution (tricaprin) to vial		Add 10 uL ISTD2 solution (tricaprin) to vial
4	Add 100 uL derivatization reagent (MSTFA) to vial and mix		Add 10 uL derivatization reagent (MSTFA) to vial and mix
5	React at room temperature for 15 minutes		React at room temperature for 15 minutes
6	Add 8 mL n-heptane to vial and mix		Add 800 uL n-heptane to vial and mix

Before building a WorkBench sample prep, we first defined the chemical resources needed to prepare the biodiesel samples and where those resources were positioned in the WorkBench trays. *Table 2* shows each resource, their tray positions and the pipetting syringe parameters used to dispense each resource. The WorkBench software also provides a graphic, overhead view of the resources in the sample trays as shown in *Figure 1*. In this example, we show ten samples in tray positions 1 to 10 and ten n-heptane resource vials that will be used for each sample. The n-heptane vials are stored in tray positions 101 to 110.

Idle 28 °C 0fi	F	Legend O Heptane	101-110
		 ISTD1 ISTD2 MSTFA 	51 52 53
		 Pending In Process Error Done 	

Figure 1. The WorkBench software provides an overhead view of each chemical resource in the sample trays. For this example, in addition to the chemical resources, ten samples were placed in tray positions 1 to 10.

Table 2. Four chemical resources are needed to completely derivatise glycerins in biodiesel. The resources, tray positions and syringe parameters are set in the WorkBench software. The syringe draw speeds are used to load each resource into the syringe. The syringe dispense speeds are used to transfer the resource into the 2-mL sample vials.

Chemical Resource	Tray Position	Syringe Size	Syringe Draw Speed	Syringe Dispense Speed
ISTD1 (1000 ug/ml butanetriol in pyridine)	51	100 uL	250 uL/min	500 uL/min
ISTD2 (8000 ug/mL tricaprin in pyridine	52	100 uL	250 uL/min	500 uL/min
MSTFA derivatization reagent	53	100 uL	250 uL/min	500 uL/min
n-Heptane	101 - 110	250 uL	500 uL/min	2000 uL/min

Sample weighing cannot be performed using the WorkBench because there is no analytical balance. Since weighing 10 mg of biodiesel can be very challenging, an Eppendorf Reference Adjustable-Volume Pipettor (10-100 uL) was used to transfer the sample. Weighing 10mg of biodiesel was done by manually pipetting 11.4uL of biodiesel into tared 2-mL vials and recording the weight to the nearest 0.1mg.

To mimic the manual sample prep workflow, individual WorkBench methods were created for each step outlined in *Table 2*. For instance, we created a method called ADD_ISTD1.M to add the first internal standard solution (ISTD1) to every sample before adding the second internal standard (ISTD2) using method ADD_ISTD2.M. With this approach, we only needed to wash the syringe with solvent after switching to a different resource. This greatly reduces the amount of wash solvent needed and allows more samples to be prepared before refilling the wash solvent reservoirs. The final 'script' for the WorkBench sample prep, including the syringe wash steps, is shown in *Table 3*. To run the complete sample prep, each method is run by the WorkBench sequence queue as shown in *Figure 2*.

Steps	Biodiesel Preparation Protocol	Method Name	Comments
1	Add 10 uL ISTD1 solution to every sample vial	ADD_ISTD1.M	uses 100-uL syringe in rear tower
2	Wash 100-uL syringe	Wash_Back.M	solvent reservoirs in rear tower
3	Add 10 uL ISTD2 solution to every sample vial	ADD_ISTD2.M	uses 100-uL syringe in rear tower
4	Wash 100-uL syringe	Wash_Back.M	solvent reservoirs in rear tower
5	Add 10 uL MSTFA reagent to each every sample vial and mix	ADD_MSTFA.M	uses 100-uL syringe in rear tower
6	Wash 100 uL syringe	Wash_Back.M	solvent reservoirs in rear tower
7	React at room temperature for 15 minutes	Reaction.M	one 15-minute wait time is used for all samples
8	Add 800 uL n-heptane to every sample vial and mix	ADD_Heptane.M	uses 250-uL syringe in front tower

Active Queue: Data Sys	stem Accepting Sequences								
Sequences in the Active Queue: 8 🜔 🔕 😒 🗙 🚽 🍇 🍇 📴									
Name	Time entered into Queue	Estimated Completion Time	Status						
Add_ISTD1	2/11/2011 4:00:44 PM		Pending						
⊕ Wash_Back	2/11/2011 4:00:57 PM		Pending						
Add_ISTD2	2/11/2011 4:01:39 PM		Pending						
⊕ Wash_Back	2/11/2011 4:01:54 PM		Pending						
Add_MSTFA	2/11/2011 4:02:10 PM		Pending						
Wash_Back	2/11/2011 4:02:42 PM		Pending						
Reaction	2/11/2011 4:03:15 PM		Pending						
Add_Heptane	2/11/2011 4:03:44 PM		Pending						

Figure 2. The WorkBench Sequence Queue is used to run the WorkBench methods described in Table 3.

Experimental

An Agilent 7890A GC was configured to run ASTM D6584. This configuration is outlined in *Table 4*. The GC conditions used to analyse the biodiesel samples and standards are shown in *Table 5*.

Table 4. Gas chromatographic instrument configuration used to analysed samples using ASTM method.

Standard 7890A GC H	ardwaro					
G3440A	Agilent 7890A Series GC					
Option 122	V					
Option 211	Capillary FID with EPC control					
G4513A	Agilent 7693A ALS					
Columns						
Analytical Column	Select Biodiesel for Glycerides					
Analytical Column	$15m \ge 0.32mm$ ID ≥ 0.1 um film (part no. cp9078)					
Data System						
	Agilent Multi-Technique Chemstation					
Consumables						
5181-1267	10 uL Teflon fixed autoinjector syringe					
Standards and Reage	nts					
5190-1408	Biodiesel D6584 Calibration Standards Kit					
5190-1407	Biodiesel MSTFA Kit					
	Reagent grade n-heptane					

Table 5. GC instrument conditions for ASTM method D6584.

Cool-on-column inlet	
Initial temperature	50 deg C
Temperature program	Oven track mode
Column flow	Helium at 3 mL/min. constant flow mode
Column Temperature	
Initial	50 deg C for 1 min.
Rate 1	15 deg C/min. to 180 deg C, hold 0 min.
Rate 2	7 deg C/min. to 230 deg C, hold 0 min.
Rate 3	30 deg C/min. to 380 deg C, hold 10 min.
Flame ionisation detector	380 deg C

A. Preparation of GC calibration standards

ASTM D6584 also specifies the derivatisation of five calibration standards with the same preparation used for the samples. After running the standards by GC, the resulting calibration curves were evaluated for linearity before running any samples. The calibration standards were prepared both manually and with the WorkBench

C. Multiuser precision - reproducibility

In order to evaluate multi-user precision, four different chemists were provided with a soybean biodiesel sample, calibration standards and a WorkBench with the chemical resources shown in *Table 2*. Each chemist was given the list of sample preparation steps outlined in *Table 3* and asked to develop and use a WorkBench protocol. Duplicates of a soybean biodiesel sample were prepared using their WorkBench followed by GC analysis.

Results

A. Preparation of GC calibration standards

The 5-level calibration curves for glycerin, monoolein, diolein and triolein are shown in *Figure 3*. The five standards used to create these curves were prepared with the Agilent WorkBench. The glycerin curve was used to quantify free glycerin in the biodiesel samples. The monoolein curve was used for the monoglycerides, the diolein curve for all diglycerides and the triolein curves for all triglycerides found in the samples. The same calibration standards were also prepared manually and used to construct calibration curves. In *Table 6* we compared the calibration models for all four compounds from the manually prepared standards and the WorkBench prepared standards. The manually prepared standards and the WorkBench prepared standards yielded nearly identical calibration curves and the correlation coefficients (r²) from the WorkBench prepared standards exceeded the ASTM specification of at least 0.99 or greater.

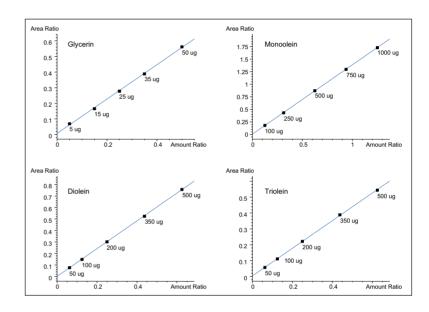
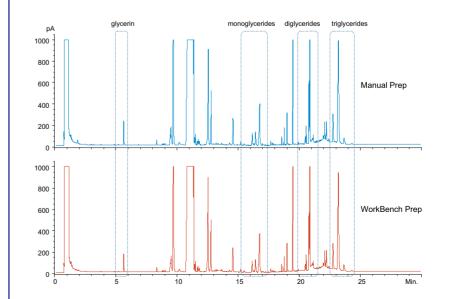



Figure 3. Calibration curves from standards prepared using the WorkBench.

Table 6. The calibrations curves resulting from manual and WorkBench preparation protocols were very similar as shown by the respective slopes and intercepts for each compound. Both preparation methods met the ASTM requirement for correlation coefficient values (r^2) of 0.99 or greater.

	N	lanual Pre	р	WorkBench			
Compound	slope y-int r ²		slope	y-int	r ²		
Glycerin	1.0433	0.0028	0.9997	1.1027	0.0049	0.9995	
Monoolein	1.3446	-0.0171	0.9997	1.3786	0.0044	1.0000	
Diolein	1.2176	-0.0010	0.9999	1.2086	-0.0014	0.9999	
Triolen	0.8303	-0.0018	0.9965	0.8703	0.0030	1.0000	

with the same protocol used for the samples. The calibration curves resulting from the manual prep were used to quantify the manually prepared biodiesel samples. The calibrations resulting from the WorkBench prepared standards were used to quantify the WorkBench prepared samples.

B. Comparison of manual sample prep and WorkBench sample prep

The first question many users will ask is 'does a scaled WorkBench sample prep produce the same results as the manual sample prep'. To help answer that question, two different types of biodiesel samples were prepared using the manual ASTM protocol and the WorkBench. The first biodiesel sample came from a small local producer using canola oil as the feedstock. The second sample was supplied by a national producer using a soybean oil feedstock. For both the manual and WorkBench protocols, each biodiesel sample was prepared and analysed in duplicate to evaluate the repeatability (single user precision) according to the ASTM method.

Figure 4. A comparison of data from a canola biodiesel sample prepared manually and using the Agilent WorkBench. These chromatograms show remarkable similarity in the four regions where glycerin, monoglycerides, diglycerides and triglycerides are separated.

focus on Chromatography

Biodiesel Sample 1 (Canola)									
	M	Manual Prep			VorkBencl	Repeatability (r)			
	Run 1 Run 2 r			Run 1	Run 2	r	Specification		
Free Glycerin	0.000	0.000	0.000	0.000	0.000	0.000	2.58E-04		
Monoglycerides	0.169	0.169		0.168	0.163				
Diglycerides	0.282	0.286		0.291	0.286				
Triglycerides	0.533	0.536		0.565	0.554				
Total Glycerin	0.984	0.991	0.007	1.023	1.003	0.020	0.083		

Biodiesel Sample 2 (soybean)										
	M	anual Prep		WorkBench			Repeatability (r)			
	Run 1	Run 2	r	Run 1	Run 2	r	Specification			
Free Glycerin	0.008	0.008	0.000	0.008	0.008	0.000	0.002			
Monoglycerides	0.138	0.144		0.141	0.140					
Diglycerides	0.022	0.023		0.022	0.021					
Triglycerides	0.009	0.009		0.006	0.005					
Total Glycerin	0.177	0.184	0.007	0.176	0.174	0.002	0.046			

Table 7. For two different types of biodiesels, the results obtained using the WorkBench prep and the manual prep were statistically identical. The precision (repeatability) observed for the WorkBench samples were well within ASTM specifications.

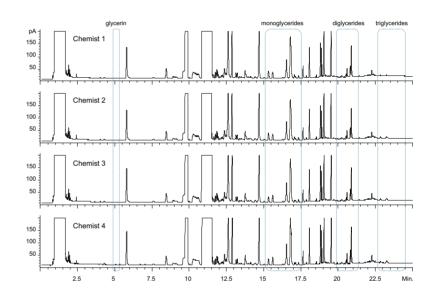
B. Comparison of manual sample prep and WorkBench sample prep

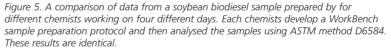
The biodiesel samples prepared manually and with the WorkBench were analysed according to ASTM method D6584. *Figure 4* shows a comparison of biodiesel sample 1 (canola) chromatograms resulting from the manual prep and the WorkBench prep. In the regions where the various glycerins elute, both chromatograms look identical. For all samples, the free and total glycerins were quantified and the results are listed in *Table 7*.

The WorkBench sample prep yielded results that were identical to those prepared manually. Both samples were prepared and analysed in duplicate to determine the repeatability of the sample preparations. Repeatability (r) is used to measure the precision for a single operator by taking the difference between duplicate analyses of each sample.

As can be seen in *Table 7*, the samples prepared using the WorkBench exceeded minimum repeatability specification set by ASTM for this analysis. This shows that after a 10-fold reduced scale, samples prepared with Workbench can easily provide the same precise results as manually prepared samples using much larger amounts of chemicals, reagents and solvents.

C. Multiuser precision - reproducibility


Figure 5 shows the same soybean biodiesel sample prepared by four different chemists on four different days. The chromatography between each chemist is nearly identical.


The quantitative results obtained by each chemist are shown in *Table 8* along with an evaluation of the precision between groups (reproducibility). These results show a very high level of precision when several chemists develop and prepare the same sample with the automated Agilent WorkBench.

		Chemist 1			Chemist 2		Reproducibility	ASTM R
	Run 1	Run 2	Average	Run 1	Run 2	Average	(R)	Specification
Free Glycerin	0.004	0.004	0.004	0.004	0.004	0.004	0.000	0.007
Monoglycerides	0.107	0.114	0.111	0.109	0.118	0.113		
Diglycerides	0.032	0.034	0.033	0.033	0.036	0.034		
Triglycerides	0.009	0.009	0.009	0.008	0.009	0.008		
Total Glycerin	0.152	0.161	0.156	0.154	0.166	0.160	0.005	0.094
		Chemist 3			Chemist 4		Reproducibility	ASTM R
	Run 1	Run 2	Average	Run 1	Run 2	Average	(R)	Specification

	Run 1	Run 2	Average	Run 1	Run 2	Average	(R)	Specification
Free Glycerin	0.004	0.004	0.004	0.004	0.004	0.004	0.000	0.007
Monoglycerides	0.116	0.114	0.115	0.113	0.114	0.113		
Diglycerides	0.033	0.033	0.033	0.032	0.033	0.032		
Triglycerides	0.007	0.007	0.007	0.006	0.006	0.006		
Total Glycerin	0.160	0.157	0.159	0.155	0.157	0.156	0.004	0.091

Table 8. Each chemist obtained the same results when using the Agilent WorkBench for automated sample preparation. The precision (reproducibility) was well within the ASTM specification for multiple operators.

Conclusion

This paper demonstrates that a complex, multi-step sample preparation protocol can be automated with the Agilent 7696A WorkBench. Analytical results obtained with WorkBench prepared samples were the same as those obtained using a traditional manual sample preparation. Even after scaling the preparation steps for the 2-mL vials, the quantitative precision was very high with WorkBench prepared samples. Reducing the sample prep scale with the WorkBench also used 10-times less solvents, reagents, and calibration standards. Additionally, there was no need to use disposable glassware and expensive volumetric glassware.

References

1. "D6584 Test Method for Determination of Free and Total Glycerine in B-100 Biodiesel Methyl Esters by Gas Chromatography"; ASTM International: 100 Barr Harbor Drive, West Conshohocken, PA, USA, 2010.

2. Agilent 7696A Sample Prep WorkBench, Agilent Technologies, Publication Number 5990-6908EN, January 28, 2011.

3. "Improved Data Quality through Automated Sample Preparation", Rebecca Veeneman and Dale Synder, Agilent Technologies, Publication Number 5990-6974EN, December 10, 2010.

Interested in publishing a **Technical Article?**

Contact Gwyneth on +44 (0)1727 855574 or email: gwyneth@intlabmate.com

New Agilent 7696A Sample Prep WorkBench.

Automated sample prep improves consistency and boosts productivity.

The new Agilent 7696A Sample Prep WorkBench reduces the time, cost, and tedium of manual sample preparation for GC or LC applications—dilutions, additions, heating/cooling, mixing, extraction, dispensing, and other operations. A simple, reliable productivity tool and a valuable addition to any busy lab, the standalone system improves the precision and reproducibility of every analysis, while freeing scientists up to focus on more challenging tasks.

- Reduces the time and tedium of sample prep
- · Eliminates sample prep variability for more confident results and less rework
- Saves money on solvents, reagents, disposal, and glassware
- Ensures lab safety by reducing exposure to hazardous reagents and samples
- Keeps accurate, auditable records—automatically!

The Agilent 7696A

WorkBench can be used for HPLC, GC, LC/MS, or GC/ MS sample prep—regardless of system manufacturer. Prepared samples are finished in 2 mL vials that are compatible with most GC and LC autosamplers.

Shortens prep time for virtually any analytical technique. Versatile enough to accommodate specialized analytical techniques used in the pharmaceutical, petrochemical, food safety, consumer products, forensics, and environmental industries, the 7696A WorkBench has an extensive repertoire of capabilities; for example:

- Dilution, aliquoting, and reconstitution ensure sample integrity while significantly reducing sample processing time.
- · Reagent and standards addition by volume or flow rate conserves resources and minimizes the need to handle toxic materials.
- Spin-vortex mixing gives you full control over mixing time and speed.
- Liquid / liquid extraction conserves reagent and eliminates variations in volume caused by repetitive manual pipetting.
- Small-volume dispensing improves sampling efficiency while reducing waste.
- Flexible, sample tray heating and Peltier cooling lets you heat one tray of 50 vials (or one vial at a time), while simultaneously cooling one tray of 50 vials.
- Automatic sample tracking generates a detailed report for each sample-including date, time, instrument, and vial position, along with the steps performed and resource chemicals used.
- Integrated bar code reader confirms and verifies samples to ensure regulatory compliance.

User-friendly, drag-anddrop software makes setup and methods development quick and easy. Built-in templates allow anyoneregardless of skill levelto develop sample prep methods with confidence.

	(and)	Venie-1	1.014
U L L P			
	Anatom Panasa Rasana Pana Inay Vid	Renard tax thankid V	utage 148
(m) (m)			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Annual Survey	Annual Spikese	11
Carry (seed)	400	Ownerstyne 198	
	878	Ownerhouse THE	
	8401	Owned Persons 1988	
	Baugeri I	OwnerNearce 1988	
	4		

Don't your people have better things to do than sample prep?

Download Agilent's new brochure and learn more about the Agilent 7696A Sample Prep WorkBench at: www.aqilent.com/chem/workbench

The Measure of Confidence Agilent Technologies

~